Serverless on FHIR: Management guidelines for the semi-technical clinician!

please share

Originally published at nuchange.ca on February 12, 2018. If you have some feedback, reach out to the author on TwitterLinkedIn or Github.

Serverless is the new kid on the block with services such as AWS Lambda, Google Cloud Functions or Microsoft Azure Functions. Essentially it lets users deploy a function (Function As A Service or FaaS) on the cloud with very little effort. Requirements such as security, privacy, scaling, and availability are taken care of by the framework itself. As healthcare slowly yet steadily progress towards machine learning and AI, serverless is sure to make a significant impact on Health IT. Here I will explain serverless (and some related technologies) for the semi-technical clinicians and put forward some architectural best practices for using serverless in healthcare with FHIR as the data interchange format.

artificial intelligence
Serverless on FHIR

Let us say, your analyst creates a neural network model based on a few million patient records that can predict the risk for MI from BP, blood sugar, and exercise. Let us call this model r = f(bp, bs, e). The model is so good that you want to use it on a regular basis on your patients and better still, you want to share it with your colleagues. So you contact your IT team to make this happen.

This is what your IT guys currently do: First, they create a web application that can take bp, bs and e as inputs using a standard interface such as REST and return r. Next, they rent a virtual machine (VM) from a cloud provider (such as DigitalOcean). Then they convert this application into a container (docker) and deploy it in the VM. You now can use this as an application from your browser (chrome) or your EMR (such as OpenMRS or OSCAR) can directly access this function. You can share it with your colleagues and they can access it in their browsers and you are happy. The VM can support up to 3 users at a time.

In a couple of months, your algorithm becomes so popular that at any one time hundreds of users try to access it and your poor VM crashes most of the time or your users have to wait forever. So you call your IT guys again for a solution. They make 100 copies of your container, but your hospital is reluctant to give you the additional funding required.

Your smart resident notices that your application is being used only in the morning hours and in the night all the 100 containers are virtually sleeping. This is not a good use of the funding dollars. You contact your IT guys again, and they set up Kubernetes for orchestrating the containers according to usage. So, what is Serverless? Serverless is a framework that makes all these so easy that you may not even need your IT guys to do this. (Well, maybe that is an exaggeration)

My personal favourite serverless toolset (if you care) is Kubernetes + Knative + riff. I don’t try to explain what the last two are or how to use them. They are so new that they keep changing every day. In essence, your IT team can complete all the above tasks with few commands typed on the command line on the cloud provider of your choice. The application (function rather) can even scale to zero! (You don’t pay anything when nobody uses it and add more containers as users increase, scaling down in the night as in your case).

Best Practices

What are the best practices when you design such useful cloud-based ‘functions’ for healthcare that can be shared by multiple users and organizations? Well, here are my two cents!

First, you need a standard for data exchange. As JSON is the data format for most APIs, FHIR wins hands down here.

Next, APIs need a mechanism to expose their capabilities and properties to the world. For example, r = f(bp, bs, e) needs to tell everyone what it accepts (bp, bs, e) and what it returns (at the bare minimum). FHIR has a resource specifically for this that has been (not so creatively) named as an Endpoint. So, a function endpoint should return a FHIR Endpoint resource with information about itself if there is no payload.

What should the payload be? Payload should be a FHIR Bundle that has all the FHIR Resources that the function needs (bp, bs and e as FHIR Observations in your case). The bundle should also include a FHIR Subscription resource that points to the receiving system (maybe your EMR) for the response ( r ).

So, what next?

Take the phone and call your IT team. Tell them to take
Kubernetes + Knative + riff for a spin! I might do the same and if I do, I will share it here.

please share
This entry was posted in HIS. Bookmark the permalink.

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.